59 research outputs found

    Multiphysics simulations of collisionless plasmas

    Get PDF
    Collisionless plasmas, mostly present in astrophysical and space environments, often require a kinetic treatment as given by the Vlasov equation. Unfortunately, the six-dimensional Vlasov equation can only be solved on very small parts of the considered spatial domain. However, in some cases, e.g. magnetic reconnection, it is sufficient to solve the Vlasov equation in a localized domain and solve the remaining domain by appropriate fluid models. In this paper, we describe a hierarchical treatment of collisionless plasmas in the following way. On the finest level of description, the Vlasov equation is solved both for ions and electrons. The next courser description treats electrons with a 10-moment fluid model incorporating a simplified treatment of Landau damping. At the boundary between the electron kinetic and fluid region, the central question is how the fluid moments influence the electron distribution function. On the next coarser level of description the ions are treated by an 10-moment fluid model as well. It may turn out that in some spatial regions far away from the reconnection zone the temperature tensor in the 10-moment description is nearly isotopic. In this case it is even possible to switch to a 5-moment description. This change can be done separately for ions and electrons. To test this multiphysics approach, we apply this full physics-adaptive simulations to the Geospace Environmental Modeling (GEM) challenge of magnetic reconnection.Comment: 13 pages, 5 figure

    Lagrangian and geometric analysis of finite-time Euler singularities

    Get PDF
    We present a numerical method of analyzing possibly singular incompressible 3D Euler flows using massively parallel high-resolution adaptively refined numerical simulations up to 8192^3 mesh points. Geometrical properties of Lagrangian vortex line segments are used in combination with analytical non-blowup criteria by Deng et al [Commun. PDE 31 (2006)] to reliably distinguish between singular and near-singular flow evolution. We then apply the presented technique to a class of high-symmetry initial conditions and present numerical evidence against the formation of a finite-time singularity in this case.Comment: arXiv admin note: text overlap with arXiv:1210.253

    The instanton method and its numerical implementation in fluid mechanics

    Full text link
    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional fluid dynamical problems. We illustrate these ideas using the two-dimensional Burgers equation and the three-dimensional Navier-Stokes equations

    Temperature gradient driven heat flux closure in fluid simulations of collisionless reconnection

    Full text link
    Recent efforts to include kinetic effects in fluid simulations of plasmas have been very promising. Concerning collisionless magnetic reconnection, it has been found before that damping of the pressure tensor to isotropy leads to good agreement with kinetic runs in certain scenarios. An accurate representation of kinetic effects in reconnection was achieved in a study by Wang et al. (Phys. Plasmas, volume 22, 2015, 012108) with a closure derived from earlier work by Hammett and Perkins (PRL, volume 64, 1990, 3019). Here, their approach is analyzed on the basis of heat flux data from a Vlasov simulation. As a result, we propose a new local closure in which heat flux is driven by temperature gradients. That way, a more realistic approximation of Landau damping in the collisionless regime is achieved. Previous issues are addressed and the agreement with kinetic simulations in different reconnection setups is improved significantly. To the authors' knowledge, the new fluid model is the first to perform well in simulations of the coalescence of large magnetic islands.Comment: 14 pages, 7 figure

    Multiscale velocity correlations in turbulence and Burgers turbulence: Fusion rules, Markov processes in scale, and multifractal predictions

    Get PDF
    We compare different approaches towards an effective description of multi-scale velocity field correlations in turbulence. Predictions made by the operator product expansion, the so-called fusion rules, are placed in juxtaposition to an approach that interprets the turbulent energy cascade in terms of a Markov process of velocity increments in scale. We explicitly show that the fusion rules are a direct consequence of the Markov property provided that the structure functions exhibit scaling in the inertial range. Furthermore, the limit case of joint velocity gradient and velocity increment statistics is discussed and put into the context of the notion of dissipative anomaly. We generalize a prediction made by the multifractal (MF) approach derived in [Phys. Rev. Lett. 80, 3244 (1998)] to correlations among inertial range velocity increment and velocity gradients of any order. We show that for the case of squared velocity gradients such a relation can be derived from "first principles" in the case of Burgers equation. Our results are benchmarked by intensive direct numerical simulations of Burgers turbulence.Comment: 18 pages, 6 figure

    Adaptive Mesh Refinement for Singular Current Sheets in Incompressible Magnetohydrodynamic Flows

    Full text link
    The formation of current sheets in ideal incompressible magnetohydrodynamic flows in two dimensions is studied numerically using the technique of adaptive mesh refinement. The growth of current density is in agreement with simple scaling assumptions. As expected, adaptive mesh refinement shows to be very efficient for studying singular structures compared to non-adaptive treatments.Comment: 8 pages RevTeX, 13 Postscript figure
    • …
    corecore